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Abstract— The ability to detect perceptions which were never this matching process is conditioned on (1) the existence
experienced before,i.e. novelty detection, is an important of accurate sensors capable of obtaining raw information
component of autonomous robots working in real environmers.  ,qm the environment, (2) the availability of fast and rbla
It is achieved by comparing current data provided by its . . . .
sensors with a previously known map of the environment. 2/90rithms capable of extracting a high-level represéoriat
This often constitutes an extremely challenging task due to from the large sets of noisy and uncertain data, and (3) the
the large amounts of data that must be compared in real- existence of an accurate method that is be able to detect the
time. With respect to previously proposed approaches, this change according to the employed representations.
paper detects changes in 3D environment based on probabilis With respect to the first question, 3D laser range sensors
models, the Gaussian Mixture Model, and a fast and robust . . s
combined constraint matching algorithm. The matching allavs or V'S'On'baseq systems C"’,m be used. Applying vision to
to represent the scene view as a graph which emerges from the feature extraction leads to increase CPU usage due to the
comparison between Mixtures of Gaussians. Finding the last complexity of the algorithms required. Conversely, a 3D
set of mutually consistent matches is equivalent to find the |aser range scanner is capable of collecting such hightguali
maximum clique on a graph. The proposed approach has been 4nq6 data but it suffers from very small number of specular
tested for mobile robotics purposes in real environments ath . . .
compared to other matching algorithms. Experimental resuts reflections. The angular unc_:ertalnty of .the laser sensor is
demonstrate the performance of the proposal. very small and, therefore, it can provide to the robot a

very fine description of the surroundings. For the second
. INTRODUCTION issue, pattern recognition and image analysis background

In order to autonomously explore and navigate on ahave inspired different methods for clustering of 3D paints
unknown and dynamic environment, mobile robots typicallyThus, simple methods have been broadly used to support
require to determine their pose (position and orientationhobile robot operation extracting planar structures oremor
and to simultaneously build a map of this environmentompact models [4], [5], [3]. Other possibility is to addses
based on perceptual data. In this situation, the ability tthe 3D clustering problem within the framework of statiatic
detect and respond suitably to scene changes arises asapproachesg.g. using Mixture Models [6] or Principal
useful component. For instance, in robotic surveillancé anComponent Analysis [7]. Specifically, Mixtures of Gaussian
security systems [1], environment changes may be riskyistributions provide good models of point clusters, as it
situations requiring the activation of some kind of alarmsvas demonstrated in previous works by the authors (see [8]
with which the robot should be aware of. In a similar wayand [9]). Finally, with respect to the third question, saler
robots exploring dangerous environmenésg( abandoned metrics have been proposed to detect changes using the data
mines [2]), should solve and warn about risk situationacquired by the sensors. Typically, the aim is to compare the
when a change is detected along its motion with respeclouds of 3D points associated to each dataset and detect
to the known map. Then, the novelty detection arises aRose pairs of points whose distance is higher than a fixed
a mechanism which allows the robot to adapt itself tehreshold. In order to reduce the computational cost of this
new situations and to continue its operation, updating therocess, more complex metrics, which include statistical
knowledge of the environment and focusing the attention cinformation associated to the underlying point distribns,

a specific region of interest [3]. have been used. In Tomast al. 's work [10], the Earth

The basic idea behind most current novelty detectiomover’s Distance was proposed as a new metric for solving
approaches in mobile robotics is that the robot carriesmssns this kind of situation. This metric was employed in a prewou
to perceive the environment and to match the obtained dat@rk by the authors where a greedy algorithm is used for
with the expected data available in the map. The success détecting changes in the robot environment [9]. The main

, , disadvantage of this approach is its strong dependenceszon th
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TABLE |

= FAST MAXIMUM CLIQUE ALGORITHM [11]
Robot working environment function cquue(U size)
o 1:if |[U| = 0 then
— 2: if size > max then
ﬁ 3D map acquired by the robot 3D map saved by the robot . max = size
at time instant ¢ at a previous time instant .
New record; save it.

3

4:

5: found := true
@ @ 6: end if

7

return

GMM space __, . Euclidean space __,

V Gaussian Mixture Model Gaussian Mixture Model 8: end if
Gf assomatesnt]t;ti:;i;lgtt:ataset at associated to a saved 3D dataset 9: while U # (Z) do
10: if size 4+ |U| < max then
11: return
ﬂ 12: end if
0 I 13 i:=min{jln; € U}
| Novelty detected in the robot surrounding | 14: if size + CM < max then
I 15: return
16: end if
Fig. 1. Problem statement: given the 3D information acquivg the laser 17: U:=U\{n;}
sensor at time instant and a known map on the environment, the robot 18: clique(U U N(n;); size + 1)
detects changes in the scene using a structural matchiogtafg. 19: if found = true then
20: return
21: end if
22: end while

Next, the data to be compared is compacted according to thes: return
well-known Gaussian Mixture Model (GMM). The GMM function new
assumes that the probability density function (pdf) of the S = o 1 do
cloud of points can be modelled by a mixture of Gaussianyg: found := false
distributions [8]. Finally, the system performs a struatur 27:  cliquefSi N N(n;), 1)
matching stage in the GMM feature space in order to findggf end ’;([)’r] = mar
the novelty in the scene. 30" return

The latter part of the process is the main novelty intro-
duced in the method by this paper. Most of the matching

algorithms in the literature are limited by the independenc h. Th bl f finding th . i bl
assumption, where each possible association is considered@P- The problem of finding the maximum clique problem

a separate problem, with no influence on the association §fcOmPutationally equivalent to some other important grap

other possible associations located in the same vicinfg T ProPlems, €.g. the maximum independent (or stable) set

proposed work uses a robust and fast algorithm which d08§°blem and the minimum node cover problem. Since these

not only take into account the Gaussians distributions sinf'© NP-hard problems, no polynomial time algorithms are

ilarity to define the global matching (absolute constraintseXpeCted to be found.
but also relative constraints related to local structunéor- In this paper, the branch-and-bound fast algorithm pro-
mation. These two constraints, both absolute and relativeosed in [11] for the maximum clique problem is employed.
are used to compute a consistency matrix for all pairwise€t {n};=; be the set of nodes of the gragh and S;
matching combinations. This matrix is used to find thd€ the subsefn;,n;1,...n,}. Firstly, the maximum clique
largest set of mutually consistent matchings. This procegégorithm looks for cliques irb,, that contaim,, (the largest
is equivalent to find the maximum clique on a graph define@lique is{n,}), then cliques inS,,_, that contain,,_, and
by this adjacency matrix. so on. The algorithm is presented in Table I. The set of nodes
The rest of the paper is organized as follows. Sec. Il briefipdjacent to a node; is denoted byN (n;) and the number
reviews the maximum clique problem and the branch-an@f nodes in the graph is. The global variablenaz gives
bound algorithm which will be employed to solve it in thisthe size of a maximum cligue when the algorithm terminates.
proposal. Sec. Il describes the proposed novelty detectid he functionc(i) gives the largest clique i¥;. Obviously,
approach. Experimental results are shown in Sec. IV. Thfgr any 1 < i < n — 1, we have that(i) = c(i + 1) or
Section also includes a comparison of the proposal witt(i) = c(i + 1) + 1. Moreover, we have(i) = c(i +1) + 1
other related approaches. Finally, Sec. V draws the maifi there is a clique inS; of sizec(i + 1) + 1 that includes

conclusions and future work. the noden;. Therefore, starting frona(n) = 1, we search
for such cliques. If a clique is foundy(i) = c(i + 1) + 1,
Il. MAXIMUM CLIQUE PROBLEM otherwisec(i) = c(i + 1). The size of a maximum clique

Let G = (N, E) be an undirected graph with node setis given by ¢(1). Old values of the functiorz(i) enables
N = {ni,..n,}. Two nodesn; and n; are said to be the new pruning strategy (in line 14). That is, if we search
adjacent if they are connected by an edgec E. A clique for a clique of size greater tha#j then we can prune the
of a graph is a set of nodes where all of them are adjaceisgarch if we consideu; to become the;j + 1)-th node and
and a maximum clique is the largest among all cliques in g+ c(i) < s.



(a) (b) (c)

Fig. 3. a) 3-dimensional laser range data and comprised y@lleyW and
black, respectively); b) GMM associated to the originaktadata; and c)
GMM associated to the comprised laser data.

\ representation is based on the restriction level imposéueto

1 tree. The tree grows until the cluster is just one point. The
BOLL f scale is chosen by setting values to the sizePof P|, and

@ ) ) to the o,,4. Vvalue.

On the other hand, considering a points cloud obtained by
Fig. 2. The main goal of the proposed algorithm is to detegtravelty 5 |aser scanner, the ground plane is almost always present
in the working environment of the roboé.g.the cylinder in b). in the data. In this work. a simple method using RANSAC
is used to fit a ground plane [13]. Finally, sparse outliers in
the 3D scan laser data are removed based on the technique

described in [14].

The main goal of novelty detection t& determine any . .
previously unknown featurg8]. This section describes the B. Gausswfn Mlx.ture Model (GMM). N
proposed algorithm for detecting changes in the robot sur- A Gaussian mixture mod¢GMM) is a probability model
rounding €.g. novelty marked in Fig. 2). The proposedfor density estimation using a convex linear combination of
method is based on our previous works [8] and [9]. In th&aussians density functions. The GMM has the form:
current approach, the 3D laser range data is preprocessed in K
order to reduce the number of points. Then, the comprised Q) — S e RN 1
data is transformed from the Euclidean space to the GMM f(x,0) ;pk 906 o, Zk) - (x ) @
space. Finally, the novelty is detected using a structural . L ) -
matching algorithm. The main advantages of this approachln this model, each Gaussian is defined by a coefficient

o L > D8 S x> 0, which satisfies)"r_ p.. = 1, and by its mean and
are (i) its feasibility, due to the data simplification andﬁovariance matrix  and ). The GMM provides good

rior compression using GMM, and (ii) r matchin :
posterior compression using GMM, and (i) robust matc ggodels of clusters of points: each cluster corresponds to a

due to the outliers removal and the use of the combin . . . o .
. . . o aussian density with mean somewhere within the centroid
constraint matching method. A more detailed description 0Of the cluster arz/d with a covariance matrix somehow mea-
the algorithm is provided by the next subsections. suring the sp,read of that cluster
Given a set of points, it is possible to find the GMM
o _ _ O using the Expectation-maximization (EM) algorithm [8].
The main aim of the pre-processing stage is to reduce th§e size of K is selected usingK,n.. and the MDL
high q§nsity of points acquired byat)_/pical 3[_) laser SCann@henalty function [15]. Fig. 3 illustrates the results of the
Specifically, the approach used in this work is based on tgeprocessing and GMM stages. In Fig. 3a, the 3D laser data
method proposed by Paugt al. [12]. This method has one ang the comprised data provided by the pre-processing stage
important contribution: it reduces the computation timél&h 4re grawn in yellow and black, respectively. The number of
minimizing the losing of geometric information. Basically points has been reduced about 70%. Figs. 3b and 3c show
it computes a multi-scale points cloud using binary spacge GMM associated to the original laser range data and to

partition. The use of covariance analysis allows to computge comprised data, respectively. See [8] for further tetai
the surface variationo) based on eigenvalues. Thereby, the

points clusterP is split if its size,|P|, is larger than a given C. Combined Constraint matching algorithm

value and the surface variation is above a maximum thresholdin this section, the matching problem is formulated as

Omaz- The value ofo,,., is set to0.1, where the range of a graph-theoretic data association problem. Thus, the fun-

o is [0; %]. This threshold has been empirically selected to damental data structure of this step is the correspondence

typical laser data density value. graph [16], which represents valid associations between
This hierarchical cluster simplification builds a binarger the two mixture of Gaussians (see Fig. 4). Cliques within

based on the split of each region. The split plane is defingde graph indicate mutual associations compatibility dmd,

by the centroid ofP and the eigenvector associated to thgerforming a maximum clique search, the joint compatible

greater eigenvalue)§). Thus, the points cloud is always association set emanated from the better matchings of Mix-

split along the direction of greatest variation. The mattale tures of Gaussians may be found. The construction of the

IIl. NOVELTY DETECTION IN 3D ENVIRONMENTS

A. Pre-processing stage



correspondence graph is performed through the application
of both relative and absolute constraints. Thus, nodes of
the graph indicate individual association compatibilityda
they are determined by absolute constraints. On the other
hand, the arcs of the correspondence graph indicate joint
compatibility of the connected nodes. They are determined
by relative constraints.

Let © {((61,p1),..-,(0n,pn))} and T
{((n,q1),---,(ym,qm))} be the GMMs associated with
two 3D scans, wher; (1, X;) and~; (11, X;) are Gaussians
functions,p; andg; are the weights associated to each Gaus-
sian, and(u, 1) is a vector containing all the coordinates
of the meang.;, and all the entries of the covariance matrix
Y. The method used to calculate the correspondence graph
has two major steps:

1) Definition of the nodes of the correspondence graph

In the proposed method, graph nodes are associated to
tentative matchings of Gaussian distributions from two

(c)

GMMs, © andT’, after applylng an absolute ConStr_amt'Fig. 4. Nodes represent tentative matchings when considedividually.
Let |©] = n and|T'| = m be the number of GaussiansArcs indicate compatible associations, and a clique is aogenutually

functions, respectively. Firstly, the algorithm genesateconsistent associations.g. the clique marked in red implies that the

the matrixT; (n x m) for all pairwise combinations,
by calculating the distance between the two Gaussian
functions:

2
whered,,,; is the Euclidean distance between the two
Gaussian functions using the coordinates of the mean
vector, anddy,; the distance between the covariance
matrices associated to the Gaussian functions [17].
This is defined as:

dgm')’j = max(dltu ) dzij)

N
ds, = | > In? (3, 55)
k=1

where )\ represents the generalized eigenvalue& pf
andX;, and N is the dimensionality of the matrices.
The matrix item associated to the matching of two
similar Gaussian functions presents a low value. On
the other hand, high values &t correspond to dissim-
ilar features. Pairwise matched features whose matrix
values are lower that a fixed threshdl. constitute
the set of tentative matchings. Thus, graph nodes are
defined as the set of all possible combinations of these
pairwise descriptorse(g. node (., 1) in Fig. 4 is
valid if §;, is a possible correspondenceaf).
Definition of the arcs of the correspondence graph
For all pairwise combinations of matchings i, a
relative constraint matrix is calculatef,. To do that,
a relative constraint on the space of the GMM is used.
A pair of matched Gaussian functior#,(y*) and ¢/,
~7) is consistent iff they satisfy the relative constraint:

4

3)
3)

2)

maz(wq, ,wdy,) < Uk,

being

wa, =/I(d9,)* = (d5,)’|
way =\/I(d2,)° — (d5,)?

®)

ij

matching shown between a) and b) may coexist).

whereU}, is a threshold defined by the user. Thus, the
corresponding entry in the relative constraint matrix
R; contains a 1 value if the constraint is satisfied (arc
in the graph), and O otherwise. For instance, in Fig. 4,
the relative constraint betweena( 1) and Qa, 2b)
matches, and then nodéq( 1b) is connected to node
(2a, 2b). The relative constraint betweea( 5b) only
matches with Za, 2b).

Maximum clique detection and change description.
The set of mutually consistent matches which provides
a largest clique is calculated. This is equivalent of
finding the maximum clique on a graph with adjacency
matrix R;. The problem was briefly explained in
Sec. IlI. After applying the maximum clique algorithm
described in that Section, this step obtains a set of
mutually compatible associatiori. a set of matched
Gaussian functions (red lines in Fig. 4). In this way, the
algorithm takes into account structural relationships to
detect correct associations, which result in 3D points
in the environment that are not associated to changes
in the robot surrounding. Thus, the set of Gaussian
functions in©® which are not included in the clique
represents the novelty detected by the algorithm. In
Fig. 4, the only node which is not include in the clique,
i.e. (2a, 5b), is the novelty in the robot environment.

IV. EXPERIMENTAL RESULTS

In this section, the proposed change detection method
has been analyzed in terms of robustness and computational
load.
straint matching algorithm, which includes the search for
the maximum clique on the graphs, is compared with other
two matching approaches: (i) a simple matching algorithm
based on the position of the Gaussian functions in the GMM

The main novelty of this work, the combined con-



space; and (ii) the greedy algorithm proposed by the authc N e D e N e sgmentod sing GMM (4 gausians)
in [9], which is based on Earth MoverSs Distance (EMD) 2 e
All the methods have been implemented in C++, and the| | o m
are tested in a 1.66GHz Pentium PC computer with 1Gb ¢ - ] ”D
RAM. k

10

P

A. Change detection in real environment T T e Tt

Novelty detection algorithm has been tested in differer @ I . E—
real environments inside the research area sited in thedMin e

Gerais Federal University, as is shown in Fig. 5. For th
experiments drawn in Fig. 5, three differembveltieswere : :
included in order to evaluate the results of the algorithm (| " /- ] :
cylinder, a person and a box in Fig. 5a, respectively). Fi¢| - & .
5b illustrates the 3D laser range data acquired by the rob . -t
after the simplification method. The GMM associated to th - 5 —
3D map is shown in Fig. 5c, and the real novelty is marke
in the figure. Results of the proposed algorithm are drawni| .
Fig. 5d. As it is shown in the figure, the novelty detectior| ~Z
algorithm is able to extract the Gaussian functions astextia |
to the changes in the environment. = = g

P ;
Robustness and computational load of the proposed matc
ing algorithm have been evaluated and compared agai... @) ®

two (_j|fferent matChmg. methods: t.he greed_y EMDTbas_egig. 6. Novelty detection algorithm: a-b) map the environingegmented
algorithm [9], and a simple matching algorithm which isysing GMM (m = 20 and m = 40, respectively). Novelty is indaghtby
only based on an absolute constrairg, the Euclidean dis- the label '1’; ¢) wrong changes have been detected by thedgréD
tance between the mean vector associated to each Gaus&gpfithm (label '2); d) The novelty detected by the propdsalgorithm has
. . . . . een indicated by the label '1’; e-f) TruePos and Error etotuaccording

function. With the aim of validating the approach, the same the number of gaussian used to segment the point clouds.
set of 3D laser range data collected by the sensors has been
used. For each 3D dataset, the Gaussian Mixture Mddel (
is calculated using different numbers of Gaussian funstionfigure, it can be noted that the averageuePos value is
(m = {10,20,30,40}). The Gaussian functions associatedhigh for each algorithm when the number of Gaussian func-
to the novelty are manually selected (the total number ions is low (n = 10 in the figure). After this value, due to
considered adotal positives Next, each novelty detection the high number of outliers, the efficiency of the algorithms
algorithm is run and the number of Gaussian functions assgecreases. However, it can be appreciated that the steuctur
ciated to correct and incorrect detected changes are nignudlased features matching algorithm used in this work present
counted, and they are consideredsmberTrueNovelty @ strong robustness to detect correct changes. Similaeto th
and NumberFalseNovelty, respectively. In Figs. 6a-b, TruePos value, the error rapidly increases for all matching
the same 3D dataset is segmented using different numigorithms analyzed in this comparative study, being this
of Gaussian functions (20 and 40, respectively). Fig. 6@ecreasing less pronounced in the proposed structuretbase
represents the results of the EMD algorithm for the GMMeatures matching algorithm. These two graphs show the
shown in Fig. 6a. As it is shown in the figure, the novelty dehigh performance of the maximum clique strategy for solving
tected by the algorithm is incorrect. The novelty is corgect novelty detection problems. Finally, Table Il illustrategh
detected by the proposed algorithm in Fig. 6d. details the time consumption of the algorithm for the experi

With the aim of evaluating the robustness of the matchingients described in this sectiom (= 20). As is shown in the
algorithm that is included in the proposed novelty detectiotable, the algorithm performance is faster that the progpase
algorithm, the following measurements are defined: [9]. These results are similar when the number of Gaussians

m is modified.

09| ——@—— Absolute Constraint
06| ——f—— Greedy EMD
|\ 07| ——@—— Proposed method

L

B. Evaluation of the robustness and time processing

__ NumberTrueNovelty
TruePos = = miositives V. CONCLUSION AND FUTURE WORK
(6) . .
Error — Number FalseNovelty This paper has presented a new method to directly detect
Number FalseNovelty+NumberTrueNovelty changes in the environment of a robot using a 3-D laser

The average performance of the matching methods after thenge finder. Gaussian Mixture Model has been used to
total experiment is given in Fig. 6e-f, which represents thebtain a new representation of the point clouds and a novel
evolution of theTruePos and Error against the number structural matching algorithm is employed to quantify the
of Gaussian functions used to define the GMM. From thisxistence of changes in the scene. The proposed method has
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Fig. 5. Three different experiments where the novelty d&ecalgorithm is evaluated. See text for further details.

TABLE Il
COMPARATIVE STUDY OF DIFFERENT NOVELTY DETECTION ALGORITHNS.

Number of Points Time Elapsed (s)
Reference MapCurrent Mag Simpl. Ref. Mag Simpl. Cur. MagGMM Ref. Map|GMM Cur. Map|Greedy EMC] Absolutg Proposeqi
Real Data - Test Area implified| 21631 21744 0.43 0.43 176.84 164.13 0.020 0.012 | 0.014
ompletq 79171 79633 - - 627.02 534.51 0.060 0.041 [ 0.046
Real Data - Test Area implified| 21631 21744 0.43 0.46 176.91 110.4 0.020 0.011 | 0.014
omplete 79171 81134 - - 624.13 1342.71 0.03 0.023 | 0.027
implified| 21631 21865 0.41 0.46 167.47 108.76 0.040 0.020 | 0.028
Real Data - Test Area m'n)p|ete 79171 80112 B g 625.23 865.12 0051 | 0.036 | 0041
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